Kernel Mixture Correntropy Conjugate Gradient Algorithm for Time Series Prediction
نویسندگان
چکیده
منابع مشابه
Kernel Conjugate Gradient for Fast Kernel Machines
We propose a novel variant of the conjugate gradient algorithm, Kernel Conjugate Gradient (KCG), designed to speed up learning for kernel machines with differentiable loss functions. This approach leads to a better conditioned optimization problem during learning. We establish an upper bound on the number of iterations for KCG that indicates it should require less than the square root of the nu...
متن کاملAn Efficient Conjugate Gradient Algorithm for Unconstrained Optimization Problems
In this paper, an efficient conjugate gradient method for unconstrained optimization is introduced. Parameters of the method are obtained by solving an optimization problem, and using a variant of the modified secant condition. The new conjugate gradient parameter benefits from function information as well as gradient information in each iteration. The proposed method has global convergence und...
متن کاملKernel Conjugate Gradient
We propose a novel variant of conjugate gradient based on the Reproducing Kernel Hilbert Space (RKHS) inner product. An analysis of the algorithm suggests it enjoys better performance properties than standard iterative methods when applied to learning kernel machines. Experimental results for both classification and regression bear out the theoretical implications. We further address the domina...
متن کاملA new hybrid conjugate gradient algorithm for unconstrained optimization
In this paper, a new hybrid conjugate gradient algorithm is proposed for solving unconstrained optimization problems. This new method can generate sufficient descent directions unrelated to any line search. Moreover, the global convergence of the proposed method is proved under the Wolfe line search. Numerical experiments are also presented to show the efficiency of the proposed algorithm, espe...
متن کاملKernel Conjugate Gradient is Universally Consistent
We study the statistical consistency of conjugate gradient applied to a bounded regression learning problem seen as an inverse problem defined in a reproducing kernel Hilbert space. This approach leads to an estimator that stands out of the well-known classical approaches, as it is not defined as the solution of a global cost minimization procedure over a fixed model nor is it a linear estimato...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Entropy
سال: 2019
ISSN: 1099-4300
DOI: 10.3390/e21080785